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Abstract

Tensegrity robots comprising solid rods connected by tensile cables are of interest due to their flexible and
robust nature, which potentially makes them suitable for uneven and unpredictable environments where tra-
ditional robots often struggle. Much progress has been made toward attaining locomotion with tensegrity robots.
However, measuring the shape of a dynamic tensegrity without the use of external hardware remains a chal-
lenge. Here we show how robotic skins may be attached around the exterior of a tensegrity structure, to both
control and measure its shape from its surface. The robotic skins are planar, skin-like membranes with inte-
grated actuators and sensors, which we use to transform a passive tensegrity structure into an active tensegrity
robot that performs tasks such as locomotion. In addition, sensors placed on the ends of the tensegrity rods are
used to directly measure orientation relative to the ground. The hardware and algorithms presented herein thus
provide a platform for surface-driven actuation and intrinsic state estimation of tensegrity structures, which we
hope will enable future tensegrity robots to execute precise closed-loop motions in real-world environments.

Keywords: tensegrity robot, state reconstruction, robotic skins

Objective

Soft robots offer functional advantages such as the
potential for safe human/robot interactions and robust-

ness to falls, impacts, and vibrations. One avenue of explora-
tion in soft robotics is to leverage the advantages of tensegrity
structures, a concept originally used to create lightweight ar-
chitectural elements.1,2 A tensegrity structure consists of rigid
compression elements (which we call rods) that are linked by
tensile elements (e.g., cables, strings). These networks form
lightweight,3 compliant, and load-bearing structures4 due to
the equilibrium between compression and tensile forces. The
concept of tensegrities has also been applied to explain bio-
logical phenomena5,6 and to create novel rolling robots.7

Several locomoting tensegrity robot designs have been
proposed, spanning a range of rod connectivity patterns, ac-
tuation mechanisms, and locomotion strategies. Tensegrity
structures are typically described by the number of rods used
in the arrangement, and common arrangements include 3-, 6-,
10-, and 12-bar tensegrities. While most proposed tensegrity
designs borrow from well-established arrangements, de-

signing new arrangements of rods and tensile elements for
tensegrity robots is not straightforward, leading some re-
searchers to leverage machine-learning techniques for robot
design.8,9 In this work, we focus on the six-bar tensegrity
structure, which has a rest configuration of an irregular
icosahedron,10–15 whose faces consist of 8 equilateral trian-
gles and 12 isosceles triangles (as shown in Fig. 1).

Common locomotion strategies generally fall into two
classes: rolling and vibration. In the rolling approach, adjust-
able rods or tension elements are used to shift the center of
mass past the polygon of stability, which is also the downward
face, and tip the robot from face to face.16–25 Most of these
proposed designs use cables24 or pneumatic actuators.10,26,27

The vibration-driven locomotion strategy exploits the tenseg-
rities’ dynamic asymmetries to produce translational mo-
tion.16,21,28–32. In one unique approach that does not fit neatly
into these two common categories, a tensegrity was placed as a
cage around a two-propeller drone, creating a robot that could
hop over obstacles, roll upon landing, and right itself before
hopping again.23 Finally, we note that most of the gaits used in
these proposed designs were selected by a human designer;
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however, several studies demonstrated the possibility of
learning locomotion strategies using machine-learning tech-
niques, often paired with a robot simulator.33–36

While prior work has led to many successful designs and
locomotion strategies, real-time state reconstruction of ten-
segrity robots has remained difficult to achieve without use of
external sensors. For example, NASA’s ‘‘Super Ball Bot’’
tensegrity robot is actuated by adjusting the length of its
tensile elements with a motor and winch.13,37 To accurately
estimate the spatial distance between two nodes in that de-
sign, the changing length of the tensile elements between rods
must be measured, and there are few sensors that can easily
measure such extreme deformations. Measuring the amount
the motor has turned is perhaps the most direct measurement,
but does not account for stretch in the cables or deformation
of the bars. ‘‘Time of flight of light’’ schemes have been
proposed as another alternative; however, these approaches
require external sensors, markers, or other points that can be
used as base stations to improve the resolution of the system,
limiting their applicability in unstructured environments.38

Another proposed design used a single-strain sensor woven
through a modular, spine-like tensegrity robot for detecting
the bending states of the entire system, but no attempt was
made at shape or orientation reconstruction.39

In this article, we present a six-bar tensegrity robot capable
of rolling locomotion that is able to achieve both shape and
orientation reconstruction without the use of external sensors.
Our tensegrity uses robotic skins27 to provide actuation and
strain sensing capabilities between its nodes, and uses contact
sensors placed at the ends of each rod to detect direct contact
with the environment. In contrast to prior pneumatic tensegrity
structures, we also placed the pneumatic control hardware
onboard the robot (Fig. 1b). Our state reconstruction algorithms
solve an optimization problem given the constraints imposed
by the connectivity of our 6-bar tensegrity, shown in Figure 1c.

In the following sections, we describe the materials and
methods used (Materials and Methods section), including the
general principle of the robotic skins (Robotic Skins section).
Next, we describe the state reconstruction model (State Re-
construction Model section) using the embedded strain sen-
sors and node contact sensors to estimate node position and
face orientation, and show validation of the model (Model
Validation section). Finally, we present teleoperated rolling
of the tensegrity robot on a declined plane (Rolling section).

Materials and Methods

Our six-bar icosahedron tensegrity robot is primarily made
of six wooden bars (9.5 mm diameter, 350 mm long,
McMaster-Carr) and 20 triangular fabric-based robotic skins.
The robotic skins include McKibben-type pneumatic actua-
tors and capacitive strain sensors (Fig. 2a), which are posi-
tioned along the edges (Fig. 2b). While all 20 faces on the
tensegrity include 3 actuators along each edge, only the 8
equilateral faces are equipped with strain sensors. We made
this choice because the edges of the isosceles faces are either
shared with an equilateral face or always slack and unable to
yield a meaningful sensor value. In the fully assembled sys-
tem, the diameter is 410 mm (node to node, e.g., between N5, 1

and N6, 1) and the entire system has a mass of 2.55 kg.
In this section, we describe each of the elements com-

prising the robotic skins and the rest of the robot.

Robotic skins

Our previous work introduced the concept of robotic skins,
which are planar substrates with embedded actuation and
sensing that can be attached to the surface of a deformable
body to impart controlled motion onto that body.27 This ca-
pability enables surface-driven motion and state estimation
of tensegrity robots. The robotic skins demonstrated in this
article are built on a substrate of two layers of spandex fabric
cut into a truncated equilateral triangle (long sides, 120 mm;
short sides, 50 mm), and sewn together along the long edges
to form a pocket that houses the other components of the
robotic skin (Fig. 2c, d). Muslin fabric pieces are sewn into
the vertices to provide a location to anchor the components
and provide a place to attach the skin externally. Several
anchor points are provided on the muslin fabric using snap
fasteners, allowing the modular actuators and strain sensors
to be exchanged. In addition, the fabric snaps allow each skin
to independently attach to the wooden support bars and to
each other, as discussed in the Supplementary Data. The
modular actuators and sensors are attached in a triangular
pattern inside the fabric skin. In this triangular arrangement,
the strain sensor readings are closely coupled to the true edge
length, simplifying the system modeling.

Pneumatic actuators. The pneumatic actuators in the
robotic skins are McKibben-type pneumatic artificial

FIG. 1. (A) Six-bar tensegrity covered by robotic skins. (B) Interior view of the robot, showing the onboard pneumatic
valves. (C) Node mapping for use in the state reconstruction algorithm. Sensors (thin black lines) measure the distances
between nodes (extremities of bars). Color images are available online.
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muscles,40 built using similar methods as in our prior work.27

The active length of each actuator is 150 mm. The actuators
are attached to the robotic skins with a 3D-printed polylactic
acid (PLA) bracket that has an integrated snap fastener. An
external tether supplies air at 172 kPa (25 psi), which results
in a contraction of 40 mm. Complete inflation is achieved in
0.5 s, while deflation takes 0.8 s. The longer deflation time is
expected, since the flow rate during inflation is driven by a
constant pressure supply, whereas the deflation is driven by a
changing pressure gradient dependent on the elastic energy
stored in the actuator and the corresponding compression of
the gas inside the actuator.

Although the tensegrity robot used 20 robotic skins, not all
edges need to be active. In its equilibrium irregular-
icosahedron shape, the robot’s 12 isosceles faces are those
that share two nodes with the endpoints of each pair of par-
allel bars, with the short side of the triangle positioned be-
tween the ends of the parallel bars (e.g., the face connecting
N3, 1 with N6, 1 and N5, 1, later named FQ in Table 2). In our
system, the 20 robotic skins are all equilateral at rest, which
creates slack between the ends of parallel bars and reduces
the performance of those sensors and actuators. Therefore,
out of 60 potential edges for actuator and sensor placement,
12 actuators and 12 sensors are located where they cannot be

FIG. 2. (A) Main components of
a robotic skin: fabric, modular
sensors, and modular actuators. (B)
Robotic skin with modular pieces
attached to the fabric using fabric
snaps. In this photograph, the fabric
envelope is turned inside-out to
expose the connection points. (C)
Assembled robotic skin. (D) Hand
grasping a robotic skin to demon-
strate the skin’s compliant and
flexible nature, even with the
modular components inside. (E)
Sensing layers of the node contact
sensor are placed inside the mold
before casting. (F) Completed node
contact sensor. (G, H) Node con-
tact sensor (arrow) making contact
with the ground exhibiting a lower
resistance (multimeter). Color im-
ages are available online.
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used and only 48 can be controlled and queried. In addition,
we simplify the pneumatic hardware by plumbing adjacent
actuator pairs to the same pneumatic regulator. This reduces
the number of required regulators from 48 to 24, without
sacrificing output force. Each actuator pair was indepen-
dently controlled by a pneumatic regulator circuit board,41

which was mounted on the rods (Fig. 1b). The advantage of
mounting the pressure regulators inside the robot is that we
can operate the robot with a single pneumatic tether, rather
than several tethers as shown in prior pneumatic tensegrity
robots,10,26 and is an important step toward creating an un-
tethered pneumatic tensegrity robot.

Strain sensors. The robotic skins are equipped with
conductive composite-based capacitive strain sensors and
appropriate signal conditioning boards.42,43 The ends of the
sensors are sewn to polystyrene tabs with integrated snap
buttons to facilitate attachment to the tensegrity’s nodes. The
sensor outputs are transmitted to a microcontroller (Arduino
Uno) using the I2C protocol and passed through a digital
exponential filter. Since the sensor data are only meaningful
if the sensors are taut, the sensors are prestrained so that they
are in tension when their associated actuator is fully con-
tracted. The unstretched active length of the sensors is
52 mm, while the at-rest length of a sensor while on the
tensegrity is roughly 90 mm. As mentioned in the Materials
and Methods section, the system does not use all the pneu-
matic actuators to operate. The same is true for strain sensors.
Sensors are only installed on the equilateral triangle robotic
skins, which results in 24 active strain sensors.

Node contact sensors

Twelve node contact sensors are installed on the ends of
the six bars in the tensegrity robot. Each node contact sensor
is made from Smooth-Sil 950 silicone (Smooth-On, Inc.) in a
3D-printed hemisphere mold with a radius of 29 mm. The
radius of the hemisphere is chosen to ensure that the ten-
segrity will only contact the ground with the node contact
sensors and not with other hardware. The elastomer provides
compliance and impact absorption. The sensing element
consists of a pressure-sensitive conductive polyolefin film
(Velostat, Adafruit 1361) sandwiched between adhesive-
backed copper foil electrodes. This sensing element is cut
into the shape of a truncated octagram, sealed between two
layers of double-sided VHB tape (0.5 mm thick, 3M 4905)
and curled to fit the contour of the hemisphere (Fig. 2e).
Connecting wires were secured to the copper electrodes. The
sensing element was then embedded in the silicone during
the casting process, ensuring that the wires protruded from
the molded material to allow for connection (Fig. 2f).

The node contact sensors decrease electrical resistance
when pressure is applied (Fig. 2g, h). A threshold resistance
value is chosen after calibration to determine whether the
node is in contact with something or not. Each finished node
contact sensor is connected to one of two onboard micro-
controllers (Arduino Pro Mini; Arduino AG) via a voltage
divider.

Electronics

The electronics system architecture consists of a micro-
controller, strain sensor signal conditioning boards, and

pneumatic regulator boards. The microcontroller communi-
cates with the strain sensors and pneumatic regulators via the
I2C protocol, and relays data to a PC via serial. Two control
methods are implemented: open-loop control with a pre-
programmed actuator sequence and teleoperated control of
each individual actuator.

Results

The primary result of this work is the demonstration that
robotic skins can be used to actuate, sense, and control a
tensegrity from its surface. The strain sensors in the robotic
skins can be used to reconstruct the state of the robot, in-
cluding both the spatial location of each node and the ori-
entation of the tensegrity with respect to the ground. In this
section, we introduce a state reconstruction model that is
enabled by our sensor platform. We describe the validation of
our state reconstruction model and demonstrate the use of the
pneumatic actuators on the robotic skins to roll the entire
system.

State reconstruction model

Our sensor-driven state reconstruction approach is un-
ique from prior approaches for six-bar tensegrity robots,
which rely on physics models or machine vision or similar
external sensors.11,12,15,44 These physics-based models are
excellent for designing a new tensegrity system and bal-
ancing the required tension forces within the system.
However, these proposed physics-based models are not
well suited for state reconstruction since they rely on
known spring forces for system components, tension on the
cables, and torques on the bars, which are difficult to
measure. In contrast, our strain sensor approach takes di-
rect measurements that can be correlated with distances
between nodes, and enables state reconstruction of the
tensegrity robot without any knowledge of the forces in the
system.

The state of the six-bar tensegrity can be described using
two mathematical objects: (1) a matrix of node positions in a
locally defined coordinate system, which gives the shape of
the system, and (2) a single number representing the face in
contact with the ground, which gives a global orientation of
the system. While this orientation system does not fully de-
fine the system in Cartesian coordinates, it does provide the
system with the essential components to allow future ten-
segrity robots to plan their motion policies and track past
motions to continue locomotion. The state reconstruction can
run in real time on a computer, using the algorithm summa-
rized in Algorithm 1. In brief, the sensor readings (dk) are fed
to a neural net, which estimates the face pointing down to the
ground (Fd). The sensor readings are also fed to an algo-
rithm that estimates the node positions (N) by minimizing
the error between estimated positions and the sensor
readings, while satisfying the constraints imposed by the
rods. In addition to a neural net, we also demonstrate direct
detection of the downward face using node contact sensors,
which identify the downward face using a lookup table.
Finally, the node positions are rotated according to the face
estimation, to yield the tensegrity’s state relative to the
surface it is resting upon.
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Algorithm 1: Real-time State Reconstruction

while true do
fdkg¼ MeasureStrainSensors();
fdlg¼ MeasureNodeContactSensors();
Fd ¼ FaceEstimation (dl);
N ¼ NodePositions (dk,Ni� 1)
Nrotated, i¼ RotationMatrix (Fd, N);

Node position estimation. Node positions are estimated
by feeding strain sensor readings to a least-squares error
minimization algorithm. Let Ni, j¼fxi, j, yi, j, zi, jgT

represent
the node position for the ith bar and jth node on the bar (where
i¼ 1, 2, ::, 6 and j¼ 1, 2, see Fig. 1c) and L represent the
length of the rigid bars. Without loss of generality, we ini-
tially define the position of node N1, 1 as the local origin (i.e.,
N1, 1¼f0, 0, 0gT

). The location of the other 11 nodes is found
with respect to this node using an optimization algorithm.
The node positions in subsequent iterations are calculated
from the prior iteration. Our optimization seeks to minimize
the error between the simulated edge lengths and the mea-
sured sensor lengths (dk) and is constrained by the rigid bars,
which cannot change in length.

minimize
Ni, j

+24

k¼ 1
( k Nm1, m2

�Nn1, n2
k � dk)

2

s:t: k Ni, 1�Ni, 2 k � L¼ 0, i¼ 1, ::, 6
(1)

where the nodes Nm1, m2
and Nn1, n2

are found for each sensor
identifier (sk) according to Table 1. Upon initialization, the
nonlinear optimization routine (sequential least-squares
quadratic programming) is seeded with node positions, which
approximates an equivalently sized regular icosahedron.
During optimization, the prior reconstructed state acts as a
seed for the next iteration.

Orientation estimation. Determination of the face in con-
tact with the environment (ground, obstacles, etc.) is critical
for motion planning of tensegrity structures. In this work, we
use the strain sensor readings in a neural network to determine
the downward face and we use node contact sensors to directly
detect the downward face. While an inertial measurement unit
can detect the direction of gravity, it cannot be used to also
determine shape, and thus, to determine shape. Here we show
how the strain sensors can be used to detect both shape and
orientation with respect to ground. In our demonstration of the
neural network, we pause for the tensegrity to stop moving to
detect the face, which significantly slows the potential speed of
the system. Therefore, we also demonstrate node contact
sensors that can quickly and directly detect contact with the
environment. However, direct contact sensing is susceptible to

sensor failure. Regardless of the method used, the downward
face Fd can be described using three nodes (Fig. 1) as

Fd ¼fNl1, l2 , Nm1, m2
, Nn1, n2

g (2)

where Fd describes the face according to Table 2.

(a) Orientation Estimation Using the Strain Sensors: Our
first approach to detecting the orientation of the tensegrity
robot uses the robotic skin-embedded strain sensors and
relies on a model-free simulation.45,46 While this ap-
proach has the disadvantage of needing to be trained on
every individual robot, it offers flexibility if the robot is
damaged, since the model-free approach can be retrained
during a mission.47

When all actuators are at rest, the tensegrity structure is
stretched more toward the top than the bottom of the
structure due to gravity. The strain sensors embedded in
the robotic skins can detect the stretching and we can feed
this information to supervised machine-learning algo-
rithms, including regression and neural networks, to
model the direction of gravity or even directly predict the
downward face. It is beyond the scope of this work to
compare different machine-learning algorithms, and we
instead focus on this simple implementation to demon-
strate that it is possible to use surface-based sensing for
orientation estimation.
We created a simple neural network to estimate the
downward face using strain sensor data only. To train the
network, we collected 60s of strain sensor data for each of
the 20 tensegrity faces. We then trained a neural network in
MATLAB using the Low-Memory Broyden-Fletcher-
Goldfarb-Shanno algorithm. The neural network is built
with an input layer consisting of 24 sensor input nodes, 1
for each sensor, a single hidden layer consisting of 10
nodes, and an output layer consisting of 20 nodes, 1 for
each face. The algorithm returns the face with the highest
probability of being downward. One limitation of this
neural network is that it is trained when the system is at
rest, meaning that the tensegrity robot must come to a
complete stop and relax all actuators before it can correctly
estimate the downward face. With a more sophisticated
network, such as a recurrent neural network, it would be
possible to train the system to estimate the downward face
during dynamic motions. Despite these limitations, this
current pairing of a simple neural network with real-time
strain sensors allows the system to estimate its orientation
without any dedicated orientation sensors.
In future work, the neural network could also be improved
by including the actuator pressures in the input layer. By
including the actuator pressures and expanding the num-
ber of conditions for which the neural network data were

Table 1. Mapping from Sensors sk to Nodes Ni, j

sk Nm1, m2
Nn1, n2

sk Nm1, m2
Nn1, n2

sk Nm1, m2
Nn1, n2

sk Nm1, m2
Nn1, n2

s1 N1, 1 N3, 1 s7 N1, 2 N6, 1 s13 N2, 2 N3, 2 s19 N3, 2 N5, 1

s2 N1, 1 N4, 1 s8 N1, 2 N6, 2 s14 N2, 2 N4, 2 s20 N3, 2 N6, 1

s3 N1, 1 N5, 1 s9 N2, 1 N3, 2 s15 N2, 2 N6, 1 s21 N4, 1 N5, 2

s4 N1, 1 N5, 2 s10 N2, 1 N4, 2 s16 N2, 2 N6, 2 s22 N4, 1 N6, 2

s5 N1, 2 N3, 1 s11 N2, 1 N5, 1 s17 N3, 1 N5, 1 s23 N4, 2 N5, 2

s6 N1, 2 N4, 1 s12 N2, 1 N5, 2 s18 N3, 1 N6, 1 s24 N4, 2 N6, 2
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trained, the future system would likely be capable of
detecting the downward face even when actuators are
active. If the downward face can be detected when ac-
tuators are active, that would reduce the sensors’ settling
time for the face detection neural network, since no
waiting time would be needed for the actuators to deflate
before reading reliable sensor values. However, we would
expect that measurements would only be accurate after
the system stopped oscillating after a roll.
(b) Orientation Estimation Using the Node Contact Sen-
sors: The node contact sensors detect which tensegrity
nodes are in contact with the ground, allowing for direct
detection of contact without the need to pause between
each locomotion step, as was the case with the current
neural net that used the strain sensors. When three nodes
are in contact, we infer that the corresponding face is
down, and by tracking history, there is the potential for
determining whether a node is touching the ground or a
wall. The algorithm for detecting the downward face in
this work is to return the downward face from a lookup
table using the last known valid triad of nodes. In other
words, if more or fewer than three nodes are in contact,
the previously predicted face is retained until a new triad
of nodes is found.
The node contact sensors are not able to detect the ori-
entation of gravity directly, and so, determination of the
downward face can only be inferred. On the contrary, the
direct sensing of contact allows for continuous prediction
of not only which face is contacting the ground but also
the edge over which the tensegrity is tipping and contacts
with walls. In the future, the node contact sensors and
strain sensors could be used jointly to detect anomalies in
terrain, such as coming into contact with a wall.

Model validation

Strain sensor calibration. In the physical tensegrity robot,
the distance between the nodes (lk) is not the same as the
active length of the sensors (dk), due to the way that the
sensors are attached to the structure. There are passive con-
nections between the strain sensors and the node end caps
(dg), thus requiring calibration. To calibrate the system, we
affixed one LED motion capture marker per node (Ni, j) on
both extremities of a given edge (lk), centered the tensegrity
robot in the field of view of the motion capture system
(Improv, PhaseSpace Inc.), and measured the distance and
sensor values at five different actuated lengths. The above
procedure was repeated for each of the 24 sensors to extract a

linear relationship to map from the sensor value to the edge
length between nodes (lk ¼Ck � dkþ dg), where the sensor
length is multiplied by a calibration constant, Ck. This cali-
bration approach does not fully model the physical consid-
erations in the system, since an active actuator may slightly
displace a sensor leading to some nonlinearity, but we de-
termined it was sufficiently accurate for our needs.

Validation of state reconstruction. To validate the model,
we simultaneously measured the position of the nodes as
estimated by the state reconstruction model and the position
of the nodes as measured in a motion capture system
(Fig. 3). We treated the motion capture data as ground truth.
To collect the motion capture data, we affixed an LED
motion capture marker on each node (the same way as in the
Strain Sensor Calibration section), and ran a pre-
programmed actuation sequence (Fig. 3a). Since not all the
markers are simultaneously visible to the motion capture
system, the analysis was conducted only for the nodes that
could be directly verified. Figure 3b presents the re-
constructed state using data from the sensors, which are
partially represented in Figure 3d, and Figure 3c presents the
spatial distribution of the motion capture markers super-
imposed onto the position of the nodes extracted by the state
reconstruction model. The Supplementary Video S1 shows
in real time the deformation and state reconstruction of the
tensegrity as well as the strain sensor and motion capture
data (four panels of Fig. 3). The LED markers are not shown
in the photographs (Fig. 3a) to reduce the number of dis-
tracting elements in the image (see Supplementary Video S2
presenting the footage of the actuated sequence with the
markers on the nodes).

To determine the accuracy of the model, we compared the
motion capture data and the points estimated using the strain
sensors and the node position estimation algorithm. Before
that could occur, however, we needed to transform the co-
ordinate systems of the motion capture data into the coordi-
nate system of the state reconstruction. To calculate the
spatial transformation, we solved the constrained Procrustes
problem for aligning the positions of known reference points
on the top face of the initial data frame, while minimizing the
least-squares error.48 The result of the least-squares algo-
rithm is a transformation matrix (T) that can convert the co-
ordinates of the motion capture data (PMC) into the
coordinate system of the tensegrity state reconstruction (Pt),
by left-multiplying the three markers of the top face in motion
capture coordinates as PSR¼ T � PMC.

Table 2. Mapping from Faces Fa to Nodes Ni, j

Fa Nl1, l2 Nm1, m2
Nn1, n2

Fa Nl1, l2 Nm1, m2
Nn1, n2

FA N1, 1 N3, 1 N4, 1 FK N1, 2 N2, 2 N6, 1

FB N1, 1 N3, 1 N5, 1 FL N1, 2 N2, 2 N6, 2

FC N1, 1 N2, 1 N5, 1 FM N2, 2 N3, 2 N6, 1

FD N1, 1 N4, 1 N5, 2 FN N2, 2 N4, 2 N6, 2

FE N1, 1 N4, 1 N5, 2 FO N1, 2 N4, 1 N6, 2

FF N2, 1 N5, 1 N3, 2 FP N2, 2 N3, 2 N4, 2

FG N2, 1 N3, 2 N4, 2 FQ N3, 1 N5, 1 N6, 1

FH N2, 1 N4, 2 N5, 2 FR N3, 2 N5, 1 N6, 1

FI N1, 2 N3, 1 N4, 1 FS N4, 1 N5, 2 N6, 2

FJ N1, 2 N3, 1 N6, 1 FT N4, 2 N5, 2 N6, 2
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We trained the rotation matrix on a single frame when the
tensegrity was static instead of the entire data set to avoid
overfitting, which is representative of initializing the ten-
segrity from an initial known configuration. Once the trans-
formation matrix was calculated, the transformation was
applied to the entire motion-capture data set and the root-
mean-squared-error (RMSE) was calculated between all cor-
responding data points. The RMSE for the entire system is
45.8 mm, or 13.1% of the rod length. Note that a part of this
error could come from the fact that not all markers were placed
exactly at the center of their respective nodes in an effort to
optimize an overall detection by the motion capture system.

Validation of the orientation estimation using the neural
network. To validate the neural network, we measured the

strain sensors of the robot in its stable state at each of the 20
faces down. The trained network has an accuracy of 99.8%,
conducted on data collected in the same experimental session
as the training data. As described above, this approach is
limited to static unactuated states. In practice, we observe that
the prediction stabilizes within a few seconds, after the sys-
tem stops oscillating. To account for the 0.2% of incorrect
predictions during operation, the algorithm returns the sta-
tistical mode of a moving window of the last five measure-
ments in the data.

Validation of the face detection using the node contact
sensors. To test the node contact sensors, the tensegrity
was manually rotated while collection of video and sensor
data (Fig. 4a, b). The test lasted *35 s and traversed 7 face

FIG. 3. (A) Tensegrity robot at different stages of a preprogrammed open-loop actuation sequence showing different
segments actuated. (B) State reconstruction from the above sequence extracted from the strain sensors and node position
estimation algorithm. (C) Comparison of the above state reconstruction (darker dots connected by lines) with data recorded
simultaneously from a motion capture system (lighter dots) to validate the strain sensors’ data and reconstruction model.
Similar colors indicate corresponding nodes. Motion capture system was unable to simultaneously detect all the nodes, and
thus, only the nodes that are visible are plotted. (D) Strain sensor data measured during the actuation sequence readily
present the deformations of the system. For clarity, 7 of the 24 strain sensors corresponding to activated actuators are
plotted. The full video sequence is available in Supplementary Video S1. Color images are available online.
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transitions. The video data were manually coded and translated
into truth data using video editing software (Adobe Premier
Pro) to determine the time stamps associated with individual
nodes contacting or leaving the ground (Fig. 4c). The individual
node contact sensors had an average accuracy of 95.0% over all
time stamps. Most of the error in the node contact sensors came
from either timing ambiguities between the truth data and the
sensor data or from sensor malfunctions.

To efficiently remove many of the errors, we output the
face with the last known valid triad of nodes and only update
the face prediction when a new valid triad is sensed. In our
trials, the face detection algorithm correctly identified the
downward face at each transition. The overall moment-to-
moment accuracy of the face detection algorithm described
above—retaining a predicted face until a new valid triad of
nodes is detected—is *89.8%. Without using our algorithm,
the moment-to-moment accuracy of each prediction against
the truth data at each time stamp without retaining the pre-
vious valid triad yields an accuracy of 62.5%. This level of
accuracy was primarily due to a single sensor behaving in-
consistently, resulting in two correct sensor values, but not a
valid triad of nodes and therefore a reduced accuracy.

The overall accuracy of our approach is highly dependent
on the independent reliability of each node contact sensor. As
a result, directly measuring the downward face using contact

is very fast and reliable, but it is also sensitive to sensor
failures. In future work, we will improve the manufacturing
process to increase the reliability of sensors.

Rolling

Locomotion of a tensegrity robot using robotic skins was
demonstrated in our prior work, although without sensors or
pressure control.27 In the present work, all the control elec-
tronics and hardware were mounted in the interior of the
robot to reduce the number of tethers and off-board hardware
required. Furthermore, this work demonstrates a teleoperated
tensegrity robot, whereas the prior work used manually op-
erated pneumatic valves.

Our hardware implementation did, however, limit the
tensegrity’s locomotion capability. The inclusion of all
pressure regulators onboard increased the system mass and
caused the robot to sag, therefore lowering the center of
gravity by a few centimeters. In addition, the actuators we
implemented were only capable of 12% strain in either di-
rection, and therefore not able to displace the center of
gravity over the polygon of stability when starting from an
equilateral face and rolling to any other face while on flat
ground.10–12 To enable rolling from any face, the robot was
laid on a declined slope (-8.7�). Figure 5 presents snapshots,

FIG. 4. (A) Sequence of manual rotations of the tensegrity robot, tipping from face to face, to validate the downward face
detection algorithm. (B) State reconstruction from the above sequence extracted from the strain sensors, node position
estimation algorithm, and node contact sensors. (C) Node contact sensor data (thin lines) measured during the rotation
sequence, plotted as normalized resistance (R�Rmin)=(Rmax�Rmin). Resistance decreases when the node is in contact with
the ground. Rows of colored bars on top show the timing interval when different faces are in contact with the ground, by
video analysis and from node contact sensors. The full video sequence is available in the Supplementary Video S3. Color
images are available online.
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and Supplementary Video S4 shows the tensegrity robot ac-
tuating its segment, destabilizing its structure, and rolling
down the plane in a sequence of six rolls. While the full
locomotion capability of this tensegrity robot was only pos-
sible with a downward slope, in future work this could be
addressed by using actuators capable of higher strains and
decreasing the system mass.

The actuation policy uses two pneumatic actuators, which
is the minimum required to achieve rolling in a pneumatic
tensegrity.10,26 It is noted that actuators located between two
parallel rods in the six-bar tensegrity structure are never
utilized. To reduce the size of the polygon of stability, one of
the two pneumatic actuators must be located on the face
touching the ground. Using lower friction nodes may help in
future work. The second pneumatic actuator is used to shift
the center of mass toward the desired locomotion direction,
and should be located on a side of the tensegrity, close to the
base face (Supplementary Fig. S1e). Since the structure has
compliance inherently built into the system, other actuators
do not need to be engaged.

Conclusion

In this article, we demonstrate a robotic six-bar tensegrity
structure, actualized by covering its surface with robotic
skins, which are two-dimensional, modular, robotic mem-
branes with embedded actuators and sensors. The robotic
skin-clad tensegrity robot is able to individually activate its
pneumatic actuators and reconstruct its state—position and
orientation—using strain sensors, and it achieves tele-
operated rolling locomotion on a declined plane. This unique
approach is the first demonstration of real-time state recon-
struction of a tensegrity robot using onboard proprioceptive
sensors.

We assess that the high stability of the robot when its base
face is an equilateral triangle is primarily caused by the limit
of force and displacement that the actuators can deliver
compared with the system’s mass and size. Such high sta-
bility makes rolling from these orientations difficult. The next

logical research target would be to improve systematic roll-
ing from any face on any surface (flat, downhill, uphill,
rugged). Potential ways to achieve this include reducing the
mass of components (number and size) and also replacing the
surface material of the nodes with a lower friction material.

In addition to the mechanical limitations, the current
sensor-processing pipeline has limitations that make dynamic
control challenging. Although the shape and face recon-
struction algorithms operate quickly on our off-board PC, the
communication between the tensegrity and the PC introduces
lag in the state estimation, as seen in Supplementary Videos
S2 and S3. However, preliminary results suggest that there
are several areas for improvement. For example, in the cur-
rent network topology, the complete set of 24 sensors can be
sampled sequentially at *30 Hz when actuation is disabled.
However, even this is not a lower bound on the achievable
system update frequency—a single capacitive strain sensor
can be sampled at a rate of 119 Hz.42 Faster communication
rates could be attained, for example, by using a dedicated
microcontroller for actuation, which would only receive data
from the PC, and a separate dedicated microcontroller that
would only send data from the sensors to the PC. This im-
provement could potentially operate quickly enough to use
the sensor feedback for dynamic control, for instance, using
insights gained from other high-dimensional, soft robotic
systems such as continuum manipulators.49 Further im-
provements in state estimation could be gained by taking into
account sequence information, using algorithms such as long
short-term memory or vanilla recurrent neural networks.
Previous application of similar algorithms to sensor networks
has been shown to be beneficial in other settings, including
human-body motion capture garments50 and soft robotic
segments.51,52

Future work would also include the implementation of
closed-loop control and dynamic orientation estimation.
Since this tensegrity robot is a soft and compliant nonlinear
system, machine learning tools would likely be the easiest
path foward to realize closed-loop control. In this optic, co-
operative coevolutionary algorithms are a promising ap-
proach. The accuracy of the neural network used with strain
sensors to estimate orientation could also be enhanced by
continuously training the network with ground truth data
from contact sensors attached to the node ends. Finally, to
eliminate the robot’s dependence on an external tether, it
could be equipped with an onboard source of compressed air,
batteries, and Wi-Fi connection. An untethered robot would
be particularly convenient for extensive training sessions
under various conditions.

By introducing the concept of proprioceptive, surface-
actuated tensegrities, we hope to enable future advances to-
ward controlled, autonomous locomotion of compliant
structures. In remote locations such as caves, mountains, and
rocky extraterrestrial terrains, there is often a lack of certainty
about the environment and lack of external sensors for lo-
calization and orientation estimation. Thus, with this com-
bination of inherent compliance and the ability to sense their
own state, tensegrity robots such as the one introduced in this
article could allow exploration of previously inaccessible
locations. Furthermore, this works serves as an additional
step toward passive tensegrity structures that can be easily
clad in removable and reconfigurable robotic skins to control
the motions of these structures from their surface.

FIG. 5. Teleoperated rolling locomotion of the tensegrity
robot (from right to left) on a downward inclined plane
(-8.7� slope) shown as superposition of screenshots of the
corresponding video in the Supplementary Video S3. Due to
the weight of the onboard pressure regulators, the robot was
only able to independently roll across declined surfaces.
Color images are available online.
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July 29–31, 2018. Setúbal, Portugal: SCITEPRESS Digital
Library, 2018, pp. 122–130.

30. Khazanov M, Humphreys B, Keat WD, et al. Exploiting
dynamical complexity in a physical tensegrity robot to
achieve locomotion. In: Artificial Life Conference Proceed-
ings 2013, East Lansing, MI, USA, July 19–22, 2013.
Cambridge, MA: MIT Press, Cambridge, 2013, pp. 965–972.
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